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Abstract

This paper shows that the concept of financial law has the structure
of automaton. 1t is then shown that the financial law impuose a group
structure to the monoid of automaton and there are obtained, in natural
way, the concepts of stationary, stationary of order n and dynamic finan-
clal laws, proving two algebraic characterization of the first. Finally, it is
introduced the concept of G-stationary financial law and its applications.

Key-words: Financial law; Semiautomata; Automata; Monoid; Group;
Stationary; Dynamic.

Resumen

En este articulo se demuestra que el concepto de ley financicra tiene
la estructura de autémata, Se prueba entonces que la ley financiera im-
pone la estructura de grupo al monoide del autédmata, obteniéndose, de
manera natural, los conceptos de ley financiera estacionaria, estacionaria
de orden n y dindmica, demostrandose dos caracterizacioncs algebriicas
de las primeras. Finalmente, se introduce el concepto de ley financiera
a-estacionaria, asf como sus aplicaciones.
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1 Introduction

1t is shown that a certain similarity exists belween economic activity and formal
computation (Ames (1983)). This parallelism can be seen in the Mathematics
of Finance, whose predecessors arc the Italian writers Cantelli, Insolera, Bon-
ferrom, fewv, etc..

The semi-axiomatic stage in the Mathematics of Iinance starts with Insolera
and there is no doubt that its subsequent influence has been noticed. In his work
*(Corso di Matematica Finanziaria” (Insolera (1937)), in which he quotes Fisher,
he states a difference between the state of an element of wealth, which is capital
and the movement of an element of wealth during a perlod of time, which is
interest,

Accarding to Fisher (1912), interest 1s an abstract device, a stream, an ac-
tion that capital endures in time, producing modifications to itself. Tn this way
Insolera defines capital as "all the money invested in a financial operation, un-
derstanding that all such action determines a quantitative variation of capital”.

On the other hand, in reality there seems to be some coincidence in that
the point of departure in the concept of Financial Law has to be the theory of
relations of preference, which is based on two fundamental concepts (Bhaumik
and Das (1984)):

1. Profits: A profit is the satisfaction produced by a good or a service charac-
terized by its physical properties, its location and by the date from when
it is available.

The measurable and guantifiable character of profit han been criticized
and discussed by various authors like Hicks and Allen, who elaborated
their theory without considering that profit was measurable, on the basis
that only the consumer is capable of establishing a scale of preferences,
thus giving rise to a so-called ordinal approach.

2. Preference relations: An economic agent prefers'the vector z” to the vector
%, if it is necessary for him to choose 7", provided that he is offered the
alternatives =" and ¥ .

The previous relations can fulfil a series of axioms (Bhaumik and Das (1684))
of which are chascn, in order to lay the foundations of the Malhemalics of
Finance, those that best represent the reality of financial operations. Basically
the idea consist of considering two goods:

1. The guantity {C') or expression in monetary units of a preduct or service.

2. The teme (#) or moment of availability or expiration of a said product or
service.
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1t 1y logical to think that the quantity 7y considered in the actual moment
tg, 1n order that it remains "equivalent” within one vear, has to wcrease its
value giving rise to another gquantity C > (%. Therelore, it doesn’t happen
here like in the general theory in which there is a ”diversion” {rom one product
to another, but completely the opposite, that’s why we will say that time is a
negative cconomic good (M. A Gil and L. il {1987)) and this will cause what
is called the principle of sub-estimation of future capital (Gil (1987)), giving rise
to Increasing curves of indifference in place of decrcasing ones.

It is also logical to exact that the relation of preference (=) fulfils the re-
Aexive, transitive and complete or decisive properties, that provides us with
the relation of induced indifference (~} which fulfils the reflexive, symmetrical
and transitive properties, that is to say it is an equivalence relation (Rodrigues

(1084)).

Thus we come {o the conclusion that the classes of equivalence caused by
the relation ~ are but curves of financial indifference with which the quotient
set will be the "map of indifference”. This means thal, given a curve of financial
mdifference, " we can move freety along it” (the same as a {ree vector along the
plane) obtaining in cach instant equivalent financial capitals between them.

From this construction we can generate financial laws from a map of financial
indifference and the opposite should also oceur.

In this approach to the concepl of financial law let us consider, in principle,
tune as a discrect variable, with which a real map of indifference will not exist
but it will exist with a group of formed curves at isolated points which will be
miore or less separated depending on the size of the period.

‘This should not be a disadvantage since, i case of being interested in calcu-
lating an mtermediate equivalent capital, we can employ another financial law
with an adequate period, belonging to the same or distinet family as the initial
law, with the one which, in this way we will be able to enler whatever point on
the temporary axis not covered by the route of the initial period.

However, in order to formalize the previous idea inside our approach, we
need a mathematical instrumnent different to those used up until now (basically
the concept. of function{!?) and this is favoured by the following motives:

1. The idea of period (time}, as a difference belween the expiry dates of the
final capital and the initial capital, has a different nature that the true
expiry, because this is a reference whose value can or cannot {depending
on dynamic and stationary financial systems respectively(®) intervene in
the expression of the financial system. However, the peried 1s a size that
acts on expirations, increasing them or decreasing them, for which some
writers (Gil {1987)) also call it ”internal time”, This difference between
the time as period and as expiry doesn’t appear clearly in the classical
models of financial laws.
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2. The concept of financial law is based in a set of properties, one of them is
the homogeneity of first-degree concerning the quantity. However, finan-
cial practice is introducing operations, such as "highly remunerated cur-
rent accounts”(®, in which that homogeneity is casted doubt (De Pablo
(1993)). 1n fact, the projection or substitute in an instant p from a "suffi-
ciently high quantity” doesn’t coincide with the product of that quantity
by the projection of the monetary unit. After saying this, it could be
thought that a ”super-account” suposses the application of some indepen-
dent financial laws set, depending on the quantity in each case. However,
this interpretation would suposse a "restricted” financial law to an interval
of quantities, which would obstruct the construction of financial processes
(Gil (1987)), having as base that financial law, because, depending on the
quantity, that process could include more or less factors.

On the other hand, in the financial operations described before, by general,
an interval without remunerating or exemption exists, which gives the
posibility that financial laws are defined on an strict subset of the positive
real numbers set.

The first of the facts described origines that we can not calculate the equi-
valent of a financial capital by consecutive multiplications of C' by F(1,¢; p)
but that we have to compose the quantity €' in F{C' {; p) consecutively.

3. Mathematically, this procedure presents some difficulties, among other
reasons by the fact that F(C t;p) is a function of R? into R and, to make
this composition, we would come to expressions as follows:

FIF(C,t,t'),1),1"],
which is not easily manageable.

However these difficulties can be solvented using the Algebraic Theory of
Aulomate (sce Arbib (1864), Arbib (1968a), Arbib (1968b), Cohn (1975),
Booth (1967), Eilenberg (1974), Ginzburg (1968}, Holcombe (1987), Lidl
and Pilz (1984)), as through this instrument, on the one hand, we can
scparate quantities and, on the other hand, we can do the same with the
expirations and, separately, make an study from which, in a natural way,
properties and generalizated caracterizations appear from the simply and
amply additive and multiplicative systems(?); besides the stationary.

Therefore, we need to restrict the expirations to a discreet sct, what,
moreover, doesn’t represent any generality lost, because it is the way in
which it 1s normally worked {Cruz (1994)).

This paper is organized as follows: the next section introduces the maodel
applied, presenting the concepts of semiautomaton, automaton and series com-
position. Moreover, in the third section, axioms of preference in arational choice
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are presenled, which justifies the definition of financial law in the fourth section.
The fifth scction includes the algebraic properties of financial law and finally
a classification is reported with two theoroms of characlerization of stationary
financial laws.

2 Semiautomata and automata

2.1 Definition (semiautomaton)

A semiautomaton is a triple

S= (x40
consisting of two nonempty sets Z and 4 and a function(®)
b:ZxA— X

Z1s called the set of states, A the input alphabet and & the next-state function
of §.

2.2 Definition (automaton)

A aulomaten 15 a quintupel
A=(Z2 A B, &2

where
(74, A8
is a semiantomaton, B s a nonempty sct called outpu! alphabet and

AZxA—DB

is the output function.

If ¢ 2 and a € A, then we interpret 6(z,e) € Z as the next state into
which 2 is transformed by the input a. A{z,a) € B is the output of z resulting
from the input a. Thus if the antomaton is in state z and receives input a, then
it chanpges to state 8(z, u} with output A(z,a).

Let us consider the sct A = Fq of the words (the empty word included) that
we can write with the elements (letters) of a set A, We define in A an operation
T in the following way. Let be @ = ajay.....ap, b = biba.. by

aTh=ajaeq.... 2pbrba.... by

Obviously, T is an internal operation in A, is associative and the emptly word
A 1s the 1dentity element, because:

aTA=ATa=3a, Vac A.
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The monoid A is called the free monoid on 4.

_In our study of automata we extend the input set 4 to the free monoid
A = Fa, with A as identity. We alsc extend é and A from Z x Ato Z x A by
defining for z € 7 and ey, a3, .....,a, € A:

8(z,A) = z,
E(Zja]) = 6(z,a1),
3(2’,0.1(12) = 6(5(2,(11),(12),

6(z,aray....a,) = 6(6(2,aya5.....a,_1), a,),

and

Az, A) = A,
X(z,al) = Az, a1),
X(z, ajag) = Maz, al)X(é(z, ai), az),

Mz, agag...a.) = Xz,a0.)M6(z,a4), azas....a, ).

In this way we obtain functions 8: Zx A — Z and A: Z x A — B. The
semiautomaton § = (Z, A, 6) (respectively, the automaton A = (Z, A4, B, 4, X))
is thus generalized to the new semiautomaton & = (2, 4,48) (respectively, au-
tomaton A = (£, A, B, 6, X)).

2.3 Definition (subautomaton)

Ay = (Z1,A, B, b1, A1) is called a subautomaton of Ay = (22, A, B, 63,4:) (A <
A it Z, € Z; and 4; and A; are the restrictions of 8, and A, respectively, on
Z] ® A

Analogously, subsemiautomaton is defined.

Let § = (Z, A, 4) be a semiautomaton. We consider S = (Z, 4, 6).

2.4 Notation
Vac A, let fo: 2 — Zf 2z fa(2) = §(z, 7).

2.5 Theorem
Ms = ({f5/ @€ A}, 0) is a monoid.
Proof. See R. Lidl and G. Pilz (1984).
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2.6 Equivalence relation on A
Forae A et fo: 7 — Z, 72— E(Z,E):
ay =ay & fz, = f7, @

V2 €4, fa,(2) = fa,(2) @ V2 € Z, 82,51) = 8(2,5).

2.7 Equivalence relation on Z
Let A =(Z, A, B,5,A) be an automaton and z,2' € Z. Then

2~ 2 ifVa € A, Xz,@) = X, 7).

2.8 Definition (Series composition)

Let A; = (Z;, Ay, By, 8, A) (7 € {1,2}) be automata, with the additional as-
sumption A, = B;.

Thf: series composition A, #A4, of A; and A, is defined as the autornaton
(Z1 % Z3, A1, By, 8,X)
with
6((z1,22),81) = (&1(21, 1), ba(z2, Mi(z1, 1)),
A((Z’l ) 2’2), al) = )\2(2'2, 4\1(21,{]!1)),
((21,22) €71 % Za,a1 € Ar).

This automaton operates as follows: An input a; € A; operates on z; and
gives a state transition 2] = &;(z;, @) and an output b = X;(21,a2) € By = A,.
This output b, operates on Zy, transforms a z3 € Z3 into 25 = éy(zy,6,) and
produces the output Az(zs, &), Then A;#.4, is in the next state (2], 25).

Analogously, we can define the series composition of an automaton 4 =
(21,41, ,61,A) and a semiautomaton & = (Z;, B, é2) as the semiautomaton

A#S = (Zl x ZQ:A]J(S)J

with & as the previous paragraph.

3 Preferences. Rational choice

Let (£, (") be the expression in monetary unitics of a econamic good referred Lo
an instant ¢ of the timne. Let

E=RxR"={{{,C)/te R, CeR}.

We suposse that in F occur the following axioms:
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3.1 Axiom 1

In £ exists a total preorder relation , e. g., a binary relation <, which yields
the following properties:

1. Reflezive: ¥(t,C) € E, (1,C) = (¢,C).
2. Transitive: ¥(t,C), (t,C")}, (t",C") € E,
if (8, 0) < (¥, and (', C) < (1", C") = (t,C) < (1", C).
3. Completel™: ¥(t,C), (t',C") € E,
(t,C) < (', CYor (t',C") < (¢,C).

3.2 Consequences of axiom 1

We consider the relation ~ defined on E as:
v, C), (', C") € E,
(6, C)~ (", CYI (1, C) = (¢, C") and (', C") < (L, C).
A} ~ is a equivalence relation.

B) < is compatible with ~, in the sense that (¢,C) < (¢',C")
(t,CYy ~ (41,Cy) and (t',C") ~ (1], C) then (¢,,Cy) = (2%, C7).

C) On E/ ~ we define a relation < as:

if it verifies

H

(8, O=[(, C)) = (1, C) 2 (¢, ).

We can prove that = is a order relation on E/ ~, called order relation <
associated with the relation <.

In the other hand, an wutifity funetion is a function:
u RxRY —R
increasing with preferences. This means that:
If (£, C) < (t',C') = u(t,C) < u(t',C").
If (1,C) ~ (t',C") = u(t,C) = u(t', ).
Therefore, each equivalence class of the relation ~ is
(1,C) = {(',CY e R x R Ju(t,C) = u(t',C")}.

It is called indifference curve and is represented briefly by the level equation
u{t,C) = k.



iNDICE

Financial laws with algebraic outomata theory 73

3.3 Axiom 2
HO<Candt <t= (6,C) <, 0.

Well now, if C < Candt =t or C=C"and t > ' = (¢, C) < (', T,
where < means < but not =.

3.4 Consequences of axiom 2

This axiom means that, given a financial capital (3, Cy), all points placed on
the north-west of (ty, Cy) are better than (¢, C'y) and the points placed on the
south-cast are worse than (1, Ch).

Therefore, according to axiom 2, the indifference curves must have a positive
slope (> 0} and it 1s obvious that curves more far of the origin will represent
greater utility index (k).

3.5 Interpretation of the axiom 2

There can be no doubt that, for each rational economic subject, the measure
in monetary unities (C) of a economic good is increasing with regard to the
dispasibility instant {t) of this good, from what the time can be considered as
a "negative economic good”.

3.6 Axiom 3

The indifference curves are convex (increasing slope), e. g.,
(to, Co) ~ (11, C1) = alte, Co) + (1 — a)(ty, C1) = (ta, Co),

Vo eR/D<a<]

3.7 Interpretation of the axiom 3
See Pigure 1.

POINT B = Very big slope: the economic subjel is prepared to give up a lot
of € by changing an unit of ¢ decrease (because the expiration is far according
to a fixed point {y). Said in another way: the interest produced by a quantity
Co placed in an instant ¢y is big the farther we move from that temporal point.

POINT A = The slope is minor than B: the subjet is prepared to give up
less than C' by changing an unit of ¢ (¢ is minor now).

POINT € = The slope is still sinaller: the subject is preparcd to give up
very little of €', by changing an unit of ¢ (now the expiration is inmediate, e
g., 1 is very little).
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This axiom could be discussed in practice, as far as interest increases with
time, it shonld not matter if, also, is a relative increase. This information as
a known fact, is a consequence of the interest ratel”) that in conclusion s a
derivate magmiude. This fact allows a distinction between "financial laws in
strict sense” and “financial laws in ample sense”.

Financial logic tell us that if a curve is over another one, its slope has to
be bigger, to verificate that the interest is increasing in relation to the quantity
that 1s produced, that 1is:

3.8 Axiom 4
Forallt € R and forall a,z € R*, Cy < € and (¢, (Cy) ~ (t+a,Cy+x) implies

(t4+a,C+x)<(C).
4 Definition (financial law)
1. We consider the following automaton:
A=(Z2,A FCr, b1, M),
where:
a) # is a subset of Z (integer numbers set): Z C Z.
b} A 15 a subgroup of (Z,4).

¢) FCp is the set of bijections strictly increasing of a set B, subsct of R,
onto itself.

d) é; : Zx A — Z/(t,a) — &(t,a) =t + a is an aclion of the group
(A, +) on the set Z.

€) A A4 x A — FCp/(t,a) — Al a) is a function which verifies the
following conditions:

(a) VE€ Z; Va,a’ € A, At +a,a Yo A (t,a) = A {t,a+a).

(bY Vi€ Z; Vaeg A; Ve e AT, 2 £ 0, (t,a) < A (t, e + 1), in the sensc
of a punctual inequalily.

(c) VteZ, Vae A, Vee A, 2 20, M (La+2)— Ai(L,a) € I'Cp.
(d) Vt € Z; Va € A; Vz, y € AT,

Mityatz)— M,y <Mta+z+y)— Mt a+y).
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2. And we consider maorcover the following semiautomaton:
S=(B,FCp, &),
wherc:
a) Bis asubset of R0 BCR.

b) 6y : B x FCp — B/J(C,f) — 6:(C, f) = F(C) is an action of the
group (F('g,c) on B.

Well now, a finencial law is the series composition £ = A#S of 4 and §
defined by the semiautomaton

(7 x B,A,§),

with:

8((t,C),a) = (8:(t, a), 6:(C, AL (2, ),

i
=

5((t,C),n) = (t+ 0,2 (1,a){C)),

4.1 Consequences of financial law definition
1. M(L,0) = Idp: Wt € Z.
In fact, V1 € Z; Va € A,
M(t,a) o Mi(t, 0) = Ar(t,a) = Ay(t,0) = Idy.

[

CATHE ) = At 4+ a,—a).
Chlta)< M{tat ), MeEZ, Vae A, Ve e AT, 2 405
S M0y < M{tx), ViEZ, Vae A, Ve e At z £ 0.

4. Mt,a)> M(tat+z), VIeZ; Vac A, Vae A™, z £
S A0 > A {t,z), tEZ, Vae A, Vo e A=, z £0.

5 Mt+x,a) < M(ta+x);, V€ Z; Vae A; Vz € AT 2 £0.

)

In fact, because of the first condition of financial law,
At z,e)od{t,2) = A (t,a+2) >
MiE+za)=Mta+z)od(t+z,—z) < A(t,a+ ).
6 M{t+xa—x)<A(ta), LEZ, YVae A Voe AT, v £0.
In fact, because of the last consequence,

Mttea—z)<A(t,a—z+2)= M(ta)
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4.2 Financial laws of capitalization and discount
If we restrict §; and A; in the financial law definition lo the monoids:
AT ={a€ Afa >0}
and
A" ={acAfa <0},

we ohtain the concepts of financial law of capitalization and financial low of
discount, respectively.

4.3 Classification of financial laws
a) According to the set Z x B:
Let £={(Z x B,A,6)and £’ = (Z' x B', A,4") be financial laws.

We say that £ < L'if Zx BC 2’ % B' and 4 and X are the restrictions of
& and A’ on % x B, respectively.

1t’s about two financial laws that differ only in that the first is applied to
some days or some capitals to which the second is apphed.

b} According to the group A:
We suposse that 2 = Z:

1. When A = Z, we say that £ is a financial law assorciated to a liquid
operation.

2. When A = nZ, we say that £ is a financial law associated to an operation
of time deposits.

(a) When A = 3602, it’s about an annual time.
{b) When A = 302, it’s abont a monthly time.

4.4 Examples
AYA=4=2, B=R"*; \(t,a) = Idp.e¥®, k> 0.
B) A=2Z=2; B=]l+f; Ai(t,e) = (Ids)*", k> 1.

The transformed of five quantities by the action of sixteen inputs, when
k=1,01, are:

See Table 1.

The profitabilities, using the compound capitabization, are:

See Table 2.

As we can observe, the profitabilities increase in accordance with the quan-
tity and the time.
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C] A= 7= Z+; B = R+, Al(t,a) = Idﬁ.kﬁﬁ,k > 0.
D)A=wZ; Z=2; B=R* M(t.a)=Idg.(l +ai)=, i>0.
EYA=30Z,2=Z2, B :]1,—}—00{; /\1(t,30)(C) =C(1+ 0003 log ).

The transformed of five quantities by the action of twelve inputs are:

See Table 3.

The profitabilities, using the simple capitalization, arc:

See Table 4.

As we can observe, the profitabilities increase in accordance with the quan-
tity and the tirpe.

4.5 Graphic representation of a financial law

See Figure 2.

4.6 Extension of the financial law concept

We extend the input set A to the free group A = F 4 and FCp to the frec group
FCg, with A as identity.

We also extend &) and A; from Z x A to Z x A defining for t € Z and
ay,dz, .....,a, € A

§1(t,A) =1,
bi(t,a) =6 (t,a) = t+a,
31(1, a1ds) = 51(3](1, 21),09) =
=h{t+ay,a)=0C+a)+a=t+(a + as),

Xl(t,A) = A,
Mt a1) = At a),

1
Mt ajay) = At @) (81(t, a1 ), 22) = A(t, @ )h(t + ay, aq),

Xl(t,mag ..... a,) = )\l(t,m)xl[t‘}l(t,ul),agag.....a,,) =
= X{t,a)) A1 (t + a1, azaa..... a.) =
= At et +agan). A (t+a; +ay+ +a,_;,a,).
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Moreover, we extend é; from B x FCUg ta B x FC g, defining for € € # and

fiofo, € FCH: _
8o, A) = C,

8o f1) = 62(C, f1)Y = A{C),
82(C, fif2) = 82(02(C, 1), Jo) =
= 8:(f1{C), f2) = [ FI{C)] = (fa0 /1)(C),

8ol C f1 fa fr) = B2l b C frfae o)y fo) = (fr 0 o0 fa o FH(C).

4.7 Particular case

If fi,fs, .., [+ are homogeneous of degree one with regard to €

ol i fare i) = (o 0o fr 0 IC) = Cofi(L). fal D) £ (L),

In this case, the financial law £ (homogeneous of degree ane with regard to
the quanlity) 15 called classteal financial low.

4.8 Graphic representation

Let
(61, Ch) = 5((1?,(:),&1),

(ta, ) = ({2, C), araz) = 8(86((¢,C),e1), aa),

_ I the semiautomaton isin the capital ({, ) and an inpul sequence ayay.....a, €
A operates, then the capitals are changed from (¢, ) to (¢),C), until the final
capital (1., (C)) is obtained. Sce Figure 3.

In the following, =y (resp. =u) is the equivalence relation on A (resp. I'Cp)
associated to the semiautomaton (2, A, 6) {resp. (B, FCUy,82)) (scc section
2.6). Moreover, ~ is the equivalence relation on 7 associated to the automaton
(Z, A, FTUu, 61, M) (see section 2.7),
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5 Algebraic properties

5.1 Theorem
Let £ be a financial law. Then M is an abelian group and A 22 M. as groups.

Proof. We know that M. is a monoid. Well now, M, is a group 7. We
copsider any element fz € My, If @ = aa4.....a,, let

—a = (—a1)(—az)..(~en).
Then it verifies that
feefoz = fozofa=Idsxn.
Analogously, it proves that:
fozofa=Idsxp.

Therefore, M is a group. Moreover, Mg is an abelian group.

In the other hand, we establish the followig carrespondernce:
i Z/ =— M,

such that:
[a] = ¢([a]) = fa.

i es bijective (Lidl and Pilz (1984)). Moreover ¢ s an homomorphism of
groups.

At last, as .
A/ == 141,
A/ = coincides with A/ =,
and -
Af == M,
1 verifies that:
A= M.

A semigroup Sy divides a semigroup Sy, if S is a homomorphic image of a
subscmigroup of S3. In symbols: 5(15,.

Let A = (21 A1, B, éy, ,\J) and 4, = (Zg, Asn, By, 52:/\2) be automata. An
(autemala-) homomorphism ® : A; — Az is a triple ® = (¢, 0. 8), ¢ - Z) —
Ay, Ay — Ag, B By — By with the property

C(él (Z! (‘")) = 62(C(z): a(‘ﬂ)?
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B(81(z,a)) = A2(((2), a(a)).

¢ 15 called a monomorphism (epimorphism, tsomorphism) if all functious ¢,
o and J are injective (surjective, bijective).

An automaton Ay = (Z;, A, B, 81, Ar) (resp., a semniautomalon 8) = (1, A8
divtdes an automaton Ay = (Zy, A, B, by, Ay) (1esp., a semiautomalon 8 =
(#a2, A, 62)) (equal input and output alphabets) if A; (resp., $1} is a homomor-
phic image of a subautomaton of A (resp., of a subsemiautomaton of §3). In
symbols: A Az (resp., $(84).

Two semigroups, automata or semiautomata are called eguivalent, if they
divide each other. In symbols: 5] ~ S3, 4, ~ .4z or §; ~ Sa.

5.2 Theorem

1. Isomorphic automata (resp., semiautomata) are equivalent (but not con-
versely).

2. A4 & Ma, fMa,.
3. A1 "-‘442 @MA: NM_A?.

Proof. See Lidl and Pilz (1984), p. 368.

On the following, we plan the problem of an scale change in the quantity.

5.3 Theorem

Let A4y = (Z1,A, B,6,X) be an automaton. We suposse that the sct 2 is
isomorphic to the set Z5, e. g., Af : Z; —+ Z5 bijective.

We define:

1.
ég:ngA—r.Zg/

(22, @) = B2(22,a) = fl6:(f 7' (22), )] :
Zyx A L} Z3
f_l x IdA f

21X A ——= 2
1
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/\2 Cha XA H/
(z2,8) — Az(z2,2) = Aa(f~H(22), @)

X
Zyx A —2 B

1w Id
f 4 A

Zi X A
Then it verifies that .4; ~ Aa, being:
Ay = (Zy, A, B, 62, As).
Proof. In fact, we define:
wrMa, — Ma,/

(2 — 2~ o(fi = (D 2, 2y,

i 1s an isomorphism of semigroups.

1. ¢ is @ mapping: Let us suppose that f(lJ f(l)
¥z € Zi, f2) = f50(2) = §1(21,8) = 81(21, T).
Vo € Zo, fE(23) = 4(22,3) = FB2(f~ (22),T)] =
= f16: (7 (22), @] = Bal(z0, @) = [(22) = (L) = (g1,
2. i is injeciive: Let us suppose that gp(fél)) = cp(fé}l) :

Yy € Za, fP(2) = fi(22) = Balz0,0) = Bo(2, @)

Vo € 21, FIAS(20)] = fl1(20, @) = 51 (F 1 (22),@)], for some 23 € 7y =

= 85(22,8) = b3(zp, @) = F[8,(f M {22), )] = f[Be(z1, 7)) =
= FED ) = Yo € 7, FED @] = S ()]
As f is injective, [ (21) = f2)(z1) = £V = 43D
3. p is surjectie:
VIZ) € Ma, A1 € Ma fo( 1) = £

It is obvious.
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4. p is an homomorphism of semigroups:
VI ) € May, o7 0 f0)) =

= p(fiy = 8 = fB 6 ) pDy o £y,

ru

Therefare,
Ma, ~ Ma, < Ay ~ Ay

5.4 Corollary

Let £ = (£ x B,A,8) be a financial law of which the set B of quantities is
expressed in a monetary unit. Let B, be the set of the previous quantities
expressed in another monetary nnit m. In these conditions, exists a financial
law

'Cm = (Z X BmlA7é"l)
which is equivalent ta £,

In this way, every financial law £ will be applied to any money: peseta,
dolar, mark, elc..

In fact, if we use as a measure unit the moncy m, given a financial law £,
we will have a bijection:
fm. : H = Bms

from which we will obtain a financial law £, such that £y, ~ £,

Analogously, last theorem lel us work on thousands, millions, ete. of that
money, given a financial law In some money m, as this transformnation represents
an scale change, the same as the money changes too.

5.5 Preference relation between financial capitals

Let £ be a financial law. On Z x B we define the following binary relation, in
an exlensive sense:

(LY, CYe ' —te dand A (1,1 —)(C) < .

The indifference relation associated to the preference relation is the following:

5.6 Equivalence between financial capitals

Let £ be a financial law. (£,C) ~ (¢, C") & Ja € A/6((1, C),a) = (¢, 7).
Well now,
§({(t,CY,a) = (¥,
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and
S{(1,CY,a) = (51(t, a), 8:(C, i (1, a))),

from what

(B1(t,a), 62(C, Ar(t,a))) = (', C,
or, analogously:

1.
hit,e)=t ot+a=t Sa=t -1

[

B2(C, A (E ) = O e Ay(t,a)}(C) = .

As might have been expected, the binary relation defined before 13 an equi-
valence relation, as it affirms subsequently:

5.7 Theorem
~ 13 an equivalence relation.

Obvionsly, this equivalence relation, in the set (#* + A) x B, where t* is any
clement of Z, verifies the axioms 1, 2, 3 and 1 (see section ).

'The conditions of financial law definition {or axioms 1, 2, 3 and 4 in section 3)
are the lollowing mterpretation in an space with a discreet horizontal dimensian:

5.8 Geometric interpretation
Condition 1: A linancial capital can "move {reely” through an mdiflerence curve.
Condition 2: The indifference curves are strictly increasing.
Caondition 3: If an indifference curve is over another one, its slepe is bigger.

Condition 4 The indifference curves are concave (striclly or not).

5.9 Meaning of relations = and ~ in a financial law £
A) What is the meaning of =) #
We have:
i= 0 @ fa=faoVieZ fz(l) = fa(t) &

!

o ¥te Z, §(ta) =68 (t,a) < (ifa=ajas....a, and @ = ajal....a

m) &
Stt+a+ar+ ... ta=(+al+ab+ .. +a, &

SapFag+ ...+ a,=a} +ah+ ... +ay,.
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We define the following mapping;:
W E/ =] — A,

defined by:

[@] = fa1as....an) — (@) =a; +az + ... + a,.
t. The previous paragraph proves that ¢ is well defined.

2. i is injective, because, in the previous paragraph, it verifies the equiva-
lence.

3. ¢ 15 surjective, because Va € A, ¢([a¢]) = a. Therefore, ¢ is hijective.

4. @ is an homomorphism of groups:
@ : (A} =, concatenation) — {A,+1,

being
(@la’] = [a@].
In fact,
¢([@][@]) = e([@dl) = w([a) + (@)
Therefore, (4/ =1, concatenation) = (A4, +).
B) What 15 the meaning of ~; ¥
We have:
eyt VEE A ML) = M(t, ) & (i 7 = arag....an) &
S Mt anh(t tar,a) A (E e + + ano1,an) =

= Al(t",al))\l(t’ +a1,a2) ..... Al(tf-i-(l-'g + ... +r1n-_1,aﬂ) <

Ayt ar) At ar)
/\I(i+al,a2) = -)\1(1’“!‘(1110'2)

)‘l(t’ +ar+ ...+ an—l:ﬂ-n)
Stta~t +a Vec A

MliE+a+ . tan_g,a,)

This aliows to define the following automaton:
6] 1 Zf 1 xA — Zf ~y

where:

([t} a) — &([t]. @) = [t + a].
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The previous paragraph proves that 67 is well defined.
A Zf e xA— FCp
where:
({t], @) = AT([t] e} = As1(t,a).
8, :Bx FCg — B
defined by:
(C. f) = &(C, f) = f(C).
The semiantomaton A*#8*, being 4* = (Z/ ~1, A4, F'Cp, 47, A7) and §* =

{H, F(Cg,63) is called the equivalent minimal sermiautomaton of A,

More particularly,
L= A" H#8 = (Z) ~, xB, A"

is called the equivalent mintmel financial lew of A.

6 Stationary financial laws

The previous construction justifies the following definition

6.1 Definition (Stationary financial law)

A financial law is called an stationary financial law if Card(Z/ ~,) = 1, g.,
Zf ~1= {te]}-
In this case, * and A" only depend of A and 3.

More generally, the previous equivalence relation ~) allows the following

6.2 Clasification of financial laws

1. Stationary or stationary financial laws of order 1t Card(Z/ ~1) = 1, ¢
g., Z/ ~1= {[to]} or, analogously,

Vie Z Yae A, A(t,a@) = At @)
2. Stationary financiel laws of order nif Card(Z/ ~1) = n, ¢c. g, Zf ~ =
(4], [t2) .. [ta]} o7, analogonsly,
Vie Z Vae A, I(i=1,2,....,n)/ (@) = X (4,3).
3. Dynamic financial lows if Card(Z/ ~) = Card{Z), e. g., Z/ ~1= Z or,

analogously,
Vit eZ teqt' =>t=1"
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6.3 Examples
A} Let us consider the following financial law in which Z = A = Z and B = R+:
b ZxZ—2Z
defined by:
(t,a) — bi(t,a) =t + a,
M ZxZ— FCp

such that:
(t,a} — A (t,a) RY =R

defined, at a time, by:
YC € B, M(t,a)(C) = et

being £ > 0.

In this case, o B
Vt E Z, Va E A, .}tl(f,ﬁ) = ;\l(tlha) =

= Z/ ~1= {[to]} = L is stationary or stationary of order 1.
Bj Let us constder the following financial law in which Z = Z, 4 = 22 and

B=R*:
6122)(22*-—’5

defined by:
{t.a) & {t,a) =t +a,

A Zx2Z — F(p

such that:
(t,a) = A(t,a) : RT - R

defined, at a time, by:
VC € B, M (L, a)(C) = C.ekallsinftt=ul+1y
being k& > 0, or, analogously:

w_ | Ce*® iftisodd
At a)(C) = { Ce® {ftis cven

because:
0, iftis odd
1, if tis even

jsing =) 1= {
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In this case,

Zf ~1= {[te], [te + 1]} = L is stationary of order 2.

) Generally, if
Y=Z A=nZ B=R*

and o
At a)(C) = Ceballsin BREE-Dl+1y g g

1L verifies that

Zf ~y= {[te], [to+ 1], ... [to + n — 1]} = £ is stationary of order n.

D) Let us consider the following financial law in which Z = A = Z and
B=RH
b ZxE —Z

defined hy:
(t,a) — & (t,a) =1+ a,

M Zx 2 — F(Cg

such that:

(t,a) — Ay (t,e) RY = R
defined, at a time, by:

lta+k
Ten M N = —
YO e, Mt a)(C)=C g

1

being & > Q.
We suppose that
tey ' 2V C A M{LT = M)
Thus,
Yoe A, VO e B, Mt a(C) =M, a)() =

t+a+k_(.,£’+a+k:”,_t
t+k Ttk -

Therefore, £ is dynamic.

= .

E) Let us consider the following financial law in which Z = Z, A — nZ and
B=R*:
b1 ZxnZ — %

defined hy:
(t,a) = &{t,a)=1t1a,
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A ZxnZ —I'Cpg

such that:
(t,a) — X{t,a) : RY =R
defined, at a time, hy:
YO € B, Ai(t,a)(C) = CeFoltlnt
being & > 0, n € A* and [t]» the remainder of ¢ divided by n.
Thus:
C.Ekﬂ‘o, if t = n,
Cetsl ift=n41,
}\](f, (I)(C) = : :
Cekale-L gfi—p4n—1

In this case,

Z} ~i={[ta], [to + 1],......[to + n — 1]} = L is stationary of order n.

In this way, to relacionate the concepts of stationary law of order n, we can
enunclate the following

6.4 Theorem

Let us suppose that A = nZ. In these conditions, £ = (Z x B, A,6) is an
stationary financial law of order n if and only if exists n stationary financial
laws

L£1,Lq, ..., Ly,
being
Ly =1{Zy x B,A,§),
Ly = (Zs x B, A, &),
£,=(Z,x B, AG),
such that

1. Z is the digjoint union of {Z;; i =1,....,n}.
2. Ly,Lq, ... g <L
Proof. 1) =) Let £ = (Z x B, A, é) be an stationary financial law of order n

= Zf ~1= {{t:],{ta), ... [tn]}. If we denote Zy = [t1], Za = [ta], ..., Zn = [tn],
Z is the disjoint nnion of Z;,i =1,.....,n.

If é; is the restriction of é to Z; x B, then £y, L2, ....., £, < £. Obviously,
£; is an slationary financial law.

ii) < It is obvious, because, in this case, Z/ ~1= {%1, %y, ..., Zn}.
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6.5 Interpretation, from a financial point of view, of the
stationary laws of order »

T'he stationary financial laws of order n musn’t be consideraled as a pure abs-
traction because it could be thought n a financial cotity that using a stalionary
financial law of order 30 in which:

Z=2 A=30Z
and
)\5(15,30) << z\j(tj,SU), for @ < j,

at which it would remuncrate plus a deposit in the space of a month made on the
first. of each month if that same quantity was invested on the second day, and
so on, with the objet of raising the colocation in the space of capital volumes
impaortant punctually, as, e. g., the payrolls cashed at the begin of the month
or the treasurership excedents in determinated dates.

On the following, we are going to establish the first algebraic characterization
of the cancept of stalionary financial law.

Let £ be a financial law and let us suppose that (Z,+) is a subgroup of
(Z,4). In these condilions, the following 1s verified

6.6 First theorem of characterization

£ is stationary if and only if &; is an homomorphism of the groups (# x 4,+)
and (F'Cg,0), ¢c. g.:

M({ta)+(t,a") = Mt a) o M(t,a) &
S+ a+a) =210t a)e A (0.

Proof. i) =) First let us suppose that the finanaal law £ 1s stationary. We
will prove that A i1s an homomorphism of groups, e. g., that

Mt ey + #,ad" ) =2t a)e A (t, 2" VL, € Z; Ve, € A
In fact,
MGa)+ (", dN=(t+ a+d) =
= (because of the first condition of financial law) =
=M+t +a a)o{t+t,a)=
= (a3 € is a stationary law) = Ay (t,a) o Ay (¢, @),

ii) «=) Now let us supposc that A; is an homomorphism of groups. We will prove
that £ is stationary, e. g., that A {t,d) = M (t',q).
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In fact, _
)\1(!,(1_) = (ifat alag.....an) =

=Mt a )t Fan ) At ay + 4+ dn_y, ) =
= M6, 0+ (0, e NDA((t + a1, 0) + (0,a2))....
At e+ ot an,0) 4+ (0,a,)) =
= (A(2,0) 0 A {0,a1)) (A1t + a1,0) 0 X1 (D, az)).....
..... (Mt+ar+ .. 4 an_,000A:(0,a,)) =
= (A2, 0) 0 A1(0,01))(A1 (' + a1, 0) 0 A1(0,a3)).....

Therefore, £ is stationary.

On the following, let us expose the second characterization of the concept of
stationary financial law.

let £ be a financial law and let us suppose that (#,+) is a subgroup of
(Z,4). In these conditions, the following is verified

6.7 Second theorem of characterization
L is stationary if and only if
({Mi(t,a)/t € Z,a € A}, 0)
is a cyclic group such that
M) = [M(0,0)]5, Vt€ 2, Vae 4,
being « the generator of A.

Proof. i) = Let us suppose £ Is a stationary financial law. Then it verifies
that

=Ml ta+ ... +aaie.. oAt +a,a)oM{l,a) =
= (as £ is a slationary financial law) =

a .
— limnes

= M(0,a) 0. o A (0,a) 0 A (0,a) = [\ (0,a]]%,
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being re the generator of A, This reasoning is valid when a and o are equal sign.
[n other case, we use the following equality:

a .
—— imes
fa
Al(t,(l,):)\l(f,-—ﬂl—fx—' ..... T - C‘F).

Therefore, ({M{t,a}/t € Z,a € A}, 0) is a eyclic group.

A consequence of the last theorem is the general expression of the stationary
financial laws, as it proves in the following
6.8 Corollary
The expression of a stationary financial law is:
Mit,a)= K~

with K > Idp.

6.9 Example
Let us consider the following financial law in which % = A = Zand B =]1, y o[
1 Z2xZ—2Z2

deflincd by:
(t,a) = 61(t,a) =1+ n,

Al Zx 2 — FCy

such that:
(t,a) — Ay(t,a) : [1,4oo[— {1, +o0[

defined, at a time, by:
VO € B A (L, a)(C) = O,
being k a real mumber > 1. Obviously,

[A{0, DHC) = CE

6.10 Definition: @-equivalence on Z

Let £ = (% x B, A, 6) be a financial law and @ € A VLY € Z,t and t' are
called @ - equivalents and 1t denotes

t ezt

M, @) =2 M (,5).
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6.11 Definition (@-stationary financial law)

Let £=(Z% x B, A.$) be afinancal law and @ € A. L s called @ - stationary if
Vt}t" € Z, Al(t,ﬁ] = )\I(t’,E), e g, Vf,f’ € 21~ t'.

Let us consider the following subset of A, that we will dencte as G-

G={ae E/E is @ — stationary}.

6.12 Theorem

(G, T)1s an abelian group, being T {he concatenation in A.
Proof.
1. {7 #£ 0, because A (empty word) € G:

M6, A) = Idg = ) (' A), Vi1 € Z.

2. If@,#& e (5, then @a’ =aTa € G.
3. In (G, T) it verifies the associative property, becanse it verifies in (4, T).
4. In (7, T}, the identity element is A.

Vi = ayag.....an € G, let us consider ~a = (—ay)(~as)....(—a,).

[

Vi, € Z, A (t,—a) =
= [Ml{t—as, a)] A {t—a; —az,a)]7 " Mt—ar—...-an,a,)) ' =5
=1 /\1(!‘,’, —al),h(t’ —day, —ag) ..... Al(lf —a; — ... —dy_1, rzn) =

= Nt (~a1)(=az)...(~an)) = Ty (t', ).

Therefore, —@ € (.

The following theorem relates stationary financial laws and a-stationary fi-
nancial laws.

6.13 Theorem

£ is stationary if and only £ is z-stationary, for all z € A.
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6.14 Example
Let £ = (% x B, A,8) a financial law such that:

14a-1
Ve Z, Vae A, YO € B, A(t,a)(C) = Cedume 6

and

ML 0)(€) = €,

FO+FE+ D)4+ flt+n) =k,

where f(t) > 0 and k > 0) are constanl.

betng f(¢) the function which verifies the following condition:

The last equation 1s a equation n finite differences. Tor its resclution, we

obtain the soluttons of:

T Lt L= 0.0%)

As "t — ] = (t — D" + """+ ...+ 1+ 1) then the solutions of the

equation:

Tl 4t 4 1=0

are the n-th roots of the unity, except 1.

i’

n+\:/I= ~ 1()0"—' 1&-316_{10. k = ﬂ, ],

Thus the solutious of the previous cquation (*) are:

[ — [E' 35Q% k = ], sy 1
wtl
We consider two cases;
A) If 7 15 even, we consider rg, & = 1, ... VB

The solutions of the equation:

JU) + Jit+1) + o + fli+n) =

are.

1 k.360°
ai_t) = pteos(t n*f? },
E =1,
2 . k.360°
agct) = p*.szn(t*—"nijlf )
1 k. -
ait) = cos(t f’ff ), ‘
k=1, 2
2 . k. 360
ait) = sm(t—nH I,
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Therefore the general solution of the equation (¥*) is:
F(6) = Crafy + C2df? + Caal) + Crald +

+ o+ Cocrdl] + Caa] + Conr e

60° 1.360°
1 ) + Cy.sen(t w1 )+

2.360° 2.360°
+ Cy.co s(t 1) + Cy.sen(t n+1)+
5 .360° 5 .360°

3 . .360 .
+ o+ Choqcos(t 2n+l )+ Cﬂ.sen(tzn_*_l )+ Cayr,

being Cy, €y, ..., 'y arbitrary constants and C,,,, = ?L-
It verifies that £ is a (n+1)-stationary financial law in ample sense. However,
£ 15 not an stationary financial law:

1.
Vi€ Z; Yo, a' € A, VC € B,

[Ma{t -+ a, 0} o Au(t, a)]{C) = M(t + a,a”)[M(t, a)(C)] =
=Mt a,a)[Cedads 6] = 0 T DL e

thata’~1
= Cedan AW Lt a a0,

Vie 7, Vage A, Ve e A, 240, YO € B,
f{tatr—1
Mt o+ 2)(C) = Coedares 10Y S

4a1
> {because of the definition, f(s) > 0) > Ciedor T = At a){C).

Vte Z, VYae A; Vo € AT, » # 0, VC € B,
t4adr—1 t4u-1
At a+2) = M (£, a)](C) = Cedanme 10D _ o220 10)
= G LT ORI @ g

As the powers of e are bigger than 1, the product of two factors of € arc
bigger than (), from which:

Mt a+z)— A(t,a) € FCx.
Moreover, ¥i € Z,

M{tn £ 1(C) = Celonse ' ) 2 0 JOHS G0 f(t4n) 3 oF
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To depend f(t) of n arbitrary constants, we can fix f{¢) choosing ki, ky, ... &,
such that:
k] +k2+ ..... +kn}.1 =J\
and caleulating the vaiues of O, Cy, ... , Un that verify the following system
of equations:
fO) = &y,
f(-l-) = kz:
fin—1) = kg,
and it is possible, because the following determinant:
cos(04 3£?:) qm(Ol 360 ) e Sl?l[[]iﬂ;—:%)
cos( 1+ 3_52 ) sin(]1 lf_ﬁe ) o sin(l4=5-)
' o ' o . ) I SGDO
cos((n — 122 %? Yy stn((n— l)lnsf_? ) o sin((n— 1)EA)

is different, of zero.
B) If n is odd, the general solution of the cquation is:

F) = Cral) + Coaf® 4+ Caalt + €1al® +

+ . + Ch Ja(n1)1t + Cr;—l'af;it + C‘n-(_])t + Chyy &

1.360° .. 13600
—— ) + Chosin{t . ) +

. 236[]0 . 7_))600
+ Ca.cost p— )+ Cysin(t . )+

n—1 n—1 ©
neS 360° h—2 360
+ + Ch_geos(t—2——) + ,_;. sm(t——

e flt) = Creos(t

)+

n+ 1 +1
+ Cn-(_l)z + C‘n+1:
being ¢, €4, ..., €, arbitrary constants and ¢y = ﬁ

The discussion of this case is analogous to the previous.
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6.15 Financial applications

1. Let us consider a financial entily that offer a ¢ % as percentage of interest
payable monthly, but variable,

Thus this entity can establish the interests of the first months more low
and the inlerests of the last months more high, for sccure a period of Lime
more clevaled in the imposilion.

2. Also this financial law can be applicated to the financing of vehicles or
another movable goods, establishing a percentage of interest very low or
zero in the first months and an interest very high in the last.

7 Conclusions

According to Levi (1973), a financial law is homogeneous of first-degree with
regard to the gquantity within certain linits, which induces to think in a homo-
geneity by "intervals of quantity”. However, this problem has not been consid-
ered by this anthor and not another one, subsisting the generalized opinion of
a difficult treatment of the question from the mathematical point of view.

In this work, we consider the problem from the point of view of the Algebraic
Automata Theory, using an apparently sophisticated mathematical instrument
though really intuitive and perfectly adequate to the problem in study. Note
as the kernel of our financial law concept is the output function A in which il
remains fixed the temnporal period of acbuation (and nol the expiry of the finan-
cial capitals). This implies an algebraic development of financial law concept,
which permits to study the Financial Mathematics from a new point of view,
generalizing classical concepts as the stationary financial systems.

We have defined a financial law as a ”device” which transform capitals into
capitals as consequence of the action of a temporal input on the first, ones
producing a "change of state”.

The financial law keeps satisfying some axioms and properties:
1. Strict increase according to the final moment.
2. Strict decrease according to the initial moment.
3. Strict increase according to the quantity.
But another axioms and properties are softened and it remain as follows:

1. The homogeneity of first-degree n accotrdance With fhe quantivy 1sn's nec-
ESSATY.
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2. The continuity and, therefore, the derivability in accordance with the
quantity aren’t necessary.

3. The existence of an homeomorphism of the set of cxpirations into the set
of quantities isn’t necessary.

Moreover, we introduce another characteristic of the financial laws: its convexity
or concavity, strict or no.

From the algebraic definition of financial law, we deduce some properties as:

1. The monoid of a financial law is a group, which, moreover, is isomorphic
to the group of possible termporal inputs.

2. If a financial law isn’t homogeneous of first-degree in accordance with the
quantity, if we want operate with another money or monetary unit, we
can find another law equivalent to the first which offer the same results
when we cancel the change of money.

Successively we study the concepts of stationary and dynamic finanecial law,
introducing an intermediate concept that is the stationary of order n financial
law. This law has its origin in the changing but periodical character of some
financial decisions on rates of interest, profitability, etc.. We justifie these laws
as an incentive to place the capitals at certain moments of time.

Finally, we introduce the concept of @-stationary financial law which also has
its origin in a changing idea of the profitabilities, rates of interest, ete., but it
includes the change of these not only in the origin but on the whole operation life
time. This 1s refered to incentivate operations to place the capitals for certain
fixed time period.
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Notes

{1) A financial system is a function F(C,t;p), where C' is the quantity, ¢ is
the initial instant and p the final instant, which verifies the following conditions:
homogeneity of degree one regard to the quantity C, F({C,pp) = C, decrease
according to ¢ and increase according to p. If p is fixed, F(C;t,p) is called a
financial law.

(2) A system F(C;%,p) is called stationary if F(C;t,p) = F(Cit + h,p +
h),¥h € R. In another case, F(C;t,p) is called dynamic.

(3) A current account is called "highly remunerated” or *super-account” if
it applies the compound interest with increasing rates of interest according to
bands of quantities.

(4) A system F{C;t,p) is called simply multiphcative (resp. additive) if
F(Lit,p).F(Lip,p') = F(L;2,p") (resp. I(1;t,p) + I(1;p,p") = 1{1;t,p’), being
I{1;t,p) = F(1;t,p) — 1). Moreover, simply multiplicative (resp. additive) +
stationary = amply multiplicative (resp. additive).

(5) In our study of automata, a partial function is a correspondence f :
A --—» B such that f(e) = b and f(a) = ¢ implies b = ¢, e. g., doesn’t need that
Dom(f) = A.

(6) In fact, the complete property implies the reflexive property, from what
this can be supressed in Axiom 1.

(7)
F(ti;p) — F(tz;p)
ty — 1

Tp(tlth;p) =

L]

being
F(tip) = F(1,t5p).
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Table 1
( QUANTITIES
YEARS [ 1.000 [ 10.000 [ 100.000 [ 1.000.000 [ 2.000.000
1 1.071 | 10964 | 112.201 | 1.148.153 | 2.312.279
2 1.148 | 12.033 | 126.037 | 1.320.079 | 2.677.199
3 1.232 | 13.219 | 141.744 | 1.519.868 | 3.104.255
4 1.323 | 14535 | 159505 | 1.752.362 | 3.604.766
5 1.422 | 15.997 | 179.907 | 2.023.300 | 4.192.237
6 1.529 | 17.623 | 203.048 | 2.339.488 | 4.882.815
7 1.645 | 19.433 | 229,444 | 2.709.019 | 5.695.829
8 1.772 | 21.449 | 259587 | 3.141.522 | 6.6h4.456
9 1.010 | 23.690 | 294.053 | 3.648.477 | 7.786.525
10 9050 | 26211 | 333.511 | 4.243.583 | 9.125.510
11 2923 [ 29.018 | 378.740 | 4.943.221 | 10.711.732
12 2401 | 32.158 | 430,650 | 5.767.003 | 12.593.844
13 9595 | 35.675 | 490.305 | 6.738.444 | 14.830.640
11 2808 | 39.618 | 558.047 | 7.885.791 | 17.493.290
15 3.040 | 44.042 | 638.035 | 9.243.016 | 20.668.084
16 3204 | 49.013 | 729.278 | 10.851.053 | 24.459.818
Table 2
QUANTITIES
YEARS [ 1.000 | 10.000 [ 100.000 T 1.000.000 | 2.000.000
! 715 | 964 1220 14’81 15’61
2 718 | 98¢ 12°26 14789 15°69
3 722 | 974 12733 14'97 1578
4 726 | 980 12°39 15°05 15°86
5 730 | 9°85 12°46 15°13 15°95
6 733 | 990 1252 15721 16’03
7 737 | 995 12'59 15°30 16’12
8 741 | 10°00 | 12'66 15’38 16°21
9 745 1 10006 | 1273 15’46 16730
10 749 | 10011 | 12°80 15'55 16739
11 753 | 10°16 | 12°86 15°63 16748
12 757 | 10022 | 1293 15772 16°57
13 T&L | 1027 | 13°00 15°80 16’66
14 765 | 10°33 | 13°07 15°89 16775
15 769 | 10°38 | 13'15 15’98 16’84
16 7731 10044 | 1322 16°06 16'94
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Tahle 3
QUANTITIES

DAYS | 1.000 | 10.000 | 100.000 | 1.000.000 | 2.000.000
30 1.009 | 10.120 | 101.500 | 1.018.000 | 2.037.806
650 1.018 | 10.241 | 103.024 | 1.036.347 | 2.076.376
90 1.027 | 10.364 | 104.573 | 1.055.050 | 2.115.798
120 1.036 | 10.489 | 106.148 | 1.074.114 | 2.153.876
150 1.045 | 10.616 | 107.749 | 1.093.548 | 2.196.840
180 1.055 | 10.744 | 109.375 | 1.113.360 | 2.238.636
210 1.064 | 10.874 | 111.029 | 1.133.556 | 2.281.282
240 1.074 | 11.006 ¢ 112.709 | 1.154.145 | 2.324.798
270 1.084 | 11.139 | 114,417 | 1.175.135 | 2.369.108
300 1.094 | 11.274 | 116.154 | 1.196.535 | 2.414.506
330 1.104 | 11.411 | 117.919 | 1.218.352 | 2.460.740
360 1.114 | 11.5506 | 119.713 | 1.240.596 | 2.507.920

Table 4
QUANTITIES

DAYS | 1.000 | 10.000 | 100.000 | 1.000.000 T 2.000.000
30 10°80 | 14740 18°00 2160 22°68
680 1’85 | 14749 18'14 21,80 22'M
90 10°91 | 14’89 1826 22°02 23’14
120 10°96 | 14769 1844 22'23 23738
150 o2 | 14°78 18°5% 22745 2362
180 11°08 § 14788 18°7h 22°67 23°86
210 11°14 | 14798 1890 22°89 24°10
240 11’19 | 15°09 1906 2312 24°35
270 11°25 | 15°19 19'22 23’35 24'61
300 T30 15°29 1438 23’58 2487
330 11°37 | 15’40 19’54 23’82 25713
360 11°43 | 1550 19'71 24°05 2539




IiNDICE

102 Estudios da Economia Ap!icc:dc:

Figure 1

Figure 2

i t+a
Figure 3
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