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ABSTRACT
A test strategy consisting of a two-step Lagrange multiplier test was recently suggested as a device

to reveal spatial nonstationarity, spurious spatial regression and presence of a spatial cointegrating
relationship between two variables. Due to the well known radicality of such pre-tests in finite samples,
the present paper suggests a Wald post-test, based on maximum likelihood estimation. The finite-sample
distribution of the test under nonstationarity is derived using Monte Carlo simulation and applied to an
empirical example.
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Economics.

Un contraste de Wald de No estacionariedad espacial

RESUMEN

Se ha propuesto recientemente una estrategia de contraste basada en el Multiplicador de Lagrange en
dos etapas para analizar no estacionariedad espacial, regresión espacial espurea y la presencia de relacio-
nes de cointegración en el caso bivariante. Como es conocido, estos métodos condicionados tienen
problemas en muestras finitas por lo que en el trabajo se presenta un contraste de Wald, basado en la
estimación de máxima verosimilitud. En el trabajo se obtiene la distribución en muestra finita del contraste
bajo la hipótesis de no estacionariedad mediante simulaciones de Monte Carlo, y se aplica a un ejemplo
concreto. La distribución obtenida para el contraste de Wald parece tener unas colas más densas que la
distribución tradicional, chi-cuadrado con un grado de libertad.
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1. INTRODUCCIÓN

Spatial regression has been discussed widely in books dedicated to developments
in spatial econometrics, notably by Anselin (1988a), and Anselin and Florax (1995).
The consequenses for estimation and inference in the presence of stable spatial
processes have been extensively investigated (Haining 1990; Anselin 1988a; Bivand
1980; Richardson 1990; Richardson and Hèmon 1981;  Clifford and  Richardson 1985;
Clifford, Richardson and Hèmon 1989). A recent study (Fingleton 1999) takes the first
steps into analyses of implications of spatial unit roots, spatial cointegration and spatial
error correction models. A follow-up to this study is found in Mur and Trivez (2003),
where the concept of spurious spatial regression is established in a framework of
spatial trend (non)stationarity. In Lauridsen (2004) estimation of spatial error-correction
models using an IV approach is investigated. Further, Lauridsen and Kosfeld (2004)
and Kosfeld and Lauridsen (2004) establish and apply a two-step Lagrange Multiplier
test for nonstationarity.

The topics studied in the present investigation may be viewed as generalisations of
common topics studied in a basin of time series literature. For example, two survey
papers on the subject of unit roots in economic time series data, Diebold and Nerlove
(1990) and Campbell and Perron (1991) cite over 200 basic sources on the subject.
The literature on unit roots and cointegration is one of the most rapidly moving target
in econometrics. Stock’s (1994) survey adds hundreds of references to those in the
aforementioned surveys and brings the literature up to date as of then. Useful basic
references on the subjects are  Box et al. (1994); Judge et al. (1985); Mills (1990);
Granger and Watson (1996); Granger and Newbold (1996); Hendry et al. (1984);
Geweke (1984); Harvey (1989, 1990); Enders (1995); Hamilton (1994); and Patterson
(2000).

The present paper refines recent suggestions. Specifically, Fingleton (1999) suggests
that “very high” values of the Moran test for spatial residual autocorrelation indicate
spatial nonstationarity and spurious regression. It is, however, left as an open question
how to distinguish between stationary positive autocorrelation and nonstationarity.
Lauridsen and Kosfeld (2004) shows that a two-step Lagrange multiplier (LM) test
for positive residual autocorrelation can provide a better founded basis to separate
these two cases and that the same procedure works as a diagnostic for spurious
regression and spatial cointegration. The practical applicability of the suggested LM
test approach was illustrated in Lauridsen and Kosfeld (2004) and Kosfeld and
Lauridsen (2004), using cases from recent empirical research. But they did not treat
the well known radicality problem of the LM test, due to its high finite-sample power
function. It is well known that the LM test, the Likelihood Ratio (LR) test and the
Wald test for any hypothesis are asymptotically equivalent, but that they for any finite
sample size obey the inequality LM > LR > Wald. The present paper introduces the
Wald test as a device for detecting spatial nonstationarity and derives the finite-sample
distribution of this test under the null using Monte Carlo simulation. Though focus is on
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the application of the test as a device to reveal spatial nonstationarity, the established
results can be straightforwadly generalised to obtain a device to test for spurious
regression and for spatial cointegration along the lines suggested by Lauridsen and
Kosfeld (2004).

2. MODELS WITH SPATIAL DYNAMICS

2.1. The regressive, spatially autoregressive model

The first order spatially autoregressive model (SAR(1) model) was initially studied by
Whittle (1954) and has been used extensively in works by Ord (1975); Cliff and Ord
(1981); Ripley (1981); Upton and Fingleton (1985); Anselin (1988a); Griffith (1992);
Haining (1990); Lauridsen (2004). For applied research the SAR(1) model is extended
by explanatory variables (see Upton and Fingleton, 1985; Anselin, 1988a; Haining,
1990; Lauridsen, 2004). The regressive, spatially autoregressive model (SARX(1)
model) is established as

y = ρWy +  Xβ +ν ,                                                             [2.1]

in which y is an nx1 vector, X an nxK matrix of explanatory variables, ρ the
autoregressive parameter, I the nxn identity matrix and v an nx1 vector of independently
normally distributed errors with zero expectation and variances σ2, i.e. ννννν −N(0,σ2I),
W denotes an nxn spatial weight matrix. It is obtained by row-standardisation of the
nxn contiguity matrix W* which is defined  by W*ij = 1 if the areal units i and j are
neighbours, and W*ij = 0 otherwise, i.e. Wij = W*ij / Γj=1..n W*ij. For alternative
specifications of the spatial weight matrix, see e.g. Cliff and Ord (1981) and Anselin
(1988a). W may be noncircular, which is the case for the time-series case where Wij
= 1 if j = i-1, for i = 2,3,..,n. For the general spatial case, W is generally circular. As
proved by Anselin (1988a), circularity of W renders OLS estimation of the parameters
inefficient. Finally, for the general case, ρ is restricted to the interval between -1 and
+1 and thus may assume positive as well as negative values. Although meriting interest
in itself, the negative case is conceptually different from the usual positive case. We
thus narrow our focus in the present investigation to the common case where ρ is
positive.

 2.2. Spurious regression and nonstationarity

If y and one or more of the x variables are generated according to SAR scemes
with positive autoregressive parameters and y is regressed on X, i.e.

                                  y = Xβ + ε,                                                [2.2]
with ε,,,,, as the error term, a risk of spurious regression occurs. Especially, in the case
of spatial nonstationarity, where y and one or more of the x variables have autoregressive
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parameters close to 1, the risk of spurious regression is alarmingly high. It manifests in
the OLS residuals e of the regression tending to be highly spatially autocorrelated.
This is demonstrated in Fingleton (1999) where extremely high values of the test
statistics of the Moran test for spatial autocorrelation (Whittle, 1954; Anselin, 1988a)
have been found. In this setting high values of Moran’s I can be viewed as the
counterpart of low values of the Durbin-Watson statistic having been established in
spurious time-series regression. In both cases the behaviour of the test statistics is
used as an indication of nonstationarity.

The stochastic process that the OLS residual e of the regression (2.1) are generated
from usually has to be inferred by inspecting their behaviour. Fingleton (1999) leaves
it as an open question how to separate the case of stationary positive autocorrelation
(0<ρ<1) from the nonstationarity case (ρ=1). Moreover, Fingleton (1999) does not
address the well-known power of the Moran I test towards misspecifications e.g. in
the form of spatial heterogeneity (Anselin, 1988a). Being an advantage in some
circumstances, this feature of the Moran I is not necessarily an advantage when
investigating specific features of the data generating processes underlying the model
in consideration.

In order to account for both shortcomings, Lauridsen and Kosfeld (2004) suggested
a two-step Lagrange Multiplier test for spatially autocorrelated errors. The LM error
statistic (LME) developed in Anselin (1988a, 1988b),

                LME = (e’We / σ2)2 / tr(W2 + W’W),                          [2.3]

is asymptotical χ2 distributed with 1 degree of freedom under H0:ρ = 0. Therefore, a
large LME value indicates either spatial nonstationarity or stationary, spatial error
autocorrelation. This result corresponds to the suggestions of Fingleton (1999) with
the Moran I test replacing the LM test. Next, under the null of nonstationarity, H0:ρ,=
0, ρε = µ ⇔ ε = ρ+µ  follows from the spatial error process  ε = ρ  ε   W  ε   + µµµµµ, µµµµµ∼N
(0,σ2I), with ρρρρρ = I - W as the spatial difference operator. ρρρρρ+ denotes the Moore-
Penrose generalised inverse which satisfies the conditions ρρρρρ+ρρρρρρρρρρ+ = ρρρρρ+ and  ρρρρρρρρρρ+ρρρρρ =
ρρρρρ. By employing the spatial difference operator ρρρρρ to (2.2) the transformed regression
equation

                              ρ                              ρ                              ρ                              ρ                              ρy = ρρρρρXβββββ + µµµµµ                                       [2.4]

is obtained. Equation (2.4) implies that a regression of ρρρρρy on ρρρρρX provides i.i.d. errors,
so that the LM error test statistic for this spatially differenced model (DLME) will be
close to zero. On the other hand, if the null of nonstationarity, H0: ρ  ε   = 1, does not hold,
then the spatial differencing will bring about an error term of the form ρε =ρε =ρε =ρε =ρε = (I-W)(I-
ρε W)-1µµµµµ, or µµµµµ = (I-ρε W) ε ε ε ε ε.

ε

  ε
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The spatially autocorrelated errors resulting from a spatially “overdifferencing”
are expected to go along with a positive DLME value. Concluding, the test strategy
consists of calculating and inspecting the LME and the DLME values, leading to one
of three conclusions (where the test result is termed to be “positive” if the LM test
statistic differs significantly from zero and “zero” otherwise): Nonstationary, spurious
regression (LME positive, DLME zero); stationary spatial autocorrelation (LME and
DLME positive); or absense of autocorrelation (LME zero, DLME positive).

It is further suggested by Lauridsen and Kosfeld (2004) to investigate whether y or
any of the x variables are spatially nonstationary. This may be revealed by using the
suggested procedure for a regression of the variable in question (i.e. z being one of y,
x1, x2, ... ) on a constant term. Specifically, the regressions z = αααααi +εεεεε and ρρρρρz = αραραραραρi +
εεεεε = εεεεε readily provide the LME and DLME test statistics, which lead to one of three
conclusions: z is spatially nonstationary (LME positive, DLME zero); z represents a
stationary SAR scheme (LME positive, DLME positive); or z is free of any spatial
pattern (LME zero, DLME positive). According to the data generating process z =
ρρρρρWz + ννννν, the z variables are spatially integrated of order one, SI(1), in the case of
nonstationarity.

An appealing alternative to the LM test procedure suggested is to estimate the
SAR model and test the hypothesis ρ=1 using a Wald test. This proposal resembles
the Dickey-Fuller approach applied to the time series case. However, even for this
special case, it is known that (1-ρ)/s.e.(ρ) does not adhere to a standard normal or t
distribution under nonstationarity. Thus, it is necessary to know the distribution of the
Wald test under spatial nonstationarity for different sample sizes. A further complication
is that this distribution may be dependent on the specific contiguity matrix in question.
The present study presents benchmark results based on three different tesselations:
the bishop, rook and queen tesselations. These three tesselations cover a broad range
of empirical contiguity matrices.

2.3. The Wald test

The Wald test is based on maximum likelihood estimation of the model with spatially
autocorrelated residuals. Specifically, the log likelihood function for y reads

             L = (2πσ2)-n/2 exp(-(y-Xβββββ)’A’A(y-Xβββββ)/(2σ2)) |A|

with A = I - ρW (for a detailed derivation, see Anselin, 1988a). Using the first order conditions
derived by Anselin (1988a), it is an easy matter to search the interval (-1, 1) for the estimate of
ρ that maximises L. Based on the estimate of ρ, estimates for βββββ and σ2 can be calculated
analytically. Inserting these estimates in the expected value of the second order conditions, the
covariance matrix for the parameters θθθθθ = (βββββ’,ρ, σ2)’ can be calculated (see Anselin, 1988a for
details). Formally, the first order conditions read
dL/dβ =  (y-Xβββββ)’A’AX/(σ2) = 0, or βββββ = (X’A’AX)-1X’A’Ay;
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dL/dρ = (y-Xβββββ)’A’W(y-Xβββββ)/(σ2) - tr(A-1W) = 0; and
dL/d(σ2) =  (2Βσ2)-n/2 exp(-(y-Xβββββ)’A’A(y-Xβββββ)/(2σ2)) |A| = 0, or σ2 = (y-Xβββββ)’A’A
(y-Xβββββ)/n.

The covariance matrix is calculated by inserting the maximum likelihood estimates
in the inverse to the information matrix, i.e. V = I22222

-1, where I22222 is made up of
Iββββββββββ = X’A’AX/σ2,
Iβρ = 0,
Iβσ2 = 0,
Iρρ = tr((WA-1)2) + tr((WA-1)’(WA-1)),
Iρσ2 = tr(WA-1/σ2), and
Iσ2σ2 = n/(2(σ2)2).

Specifying the hypothesis ρ = 1 as Rθθθθθ = q, with R = (0' 1 0) and q = 1 gives the
Wald test on general form as W = (Rθθθθθ - q)’(RVR’)-1 (Rθθθθθ - q), which for the specific
hypothesis reduces to Wald = (ρ-1)2/Vρ, with Vρ being the diagonal element of V
corresponding to ρ.

3. DISTRIBUTION OF THE WALD TEST UNDER SPATIAL
NONSTATIONARITY

In this section, the finite-sample distribution of the suggested Wald test will be
investigated using Monte Carlo simulation studies. The Monte Carlo design is as follows:
For specific sample size n and matrix W: Perform 1.000 iterations:

Generate u as an N(0,1) series and x as U(0,1).
Let e = ρρρρρ+u and y = i + x + e.
Calculate the Wald test for the hypothesis ρ = 1.

Report 1, 5 and 10 percentiles for the Wald test.

To investigate the impact of contiguity matrix type, we make use of the regular
bishop, rook and queen type contiguity matrices based on an rΗr board (so that n = r2)
with r assumed to take the values 5, 10, 15 and 20, and the irregular n=275 matrix of
the Danish municipalities. The bishop matrix represents a square tesselation with a
connectivity of four for the inner fields on the chessboard and one and two for the
corner and border fields, respectively. The queen matrix represents an octogonal
tesselation with a connectivity of eight for the inner fields and three and five for the
corner and border fields. Thus, these tesselations represent extremes for a number of
patterns, including the hexagonal tesselation, which is of importance due to its application
for empirical maps in vector and raster based GIS (Boots and Tiefelsdorf, 2000;
Tiefelsdorf, 2000). Actually, the hexagonal tesselation can be constructed from the
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queen tesselation by deleting connections from any field to the fields vertically above
and below this. Moreover, most empirically observed observed regional structures in
spatial econometrics are made up of regions with a connectivity within the range of
the rook and queen tesselations.

The results are reported in Table 1. It is seen that the critical limits of the Wald test
under spatial nonstationarity are higher than for the χ2(1) distribution. Especially, this
holds true for the bishop type matrix. For the rook and queen type matrices, the deviations
are approximately equal and found to be most pronounced for the 5 and 10 percentile,
thus indicating that the Wald test under nonstationarity has a distribution with a thicker
right tail than the χ2(1) distribution.

4.  AN EMPIRICAL ILLUSTRATION

To illustrate the above concepts, we provide an empirical example which were
investigated in more details in Lauridsen and Nahrstedt (1999) and Lauridsen (2004).
The model is concerned with determination of a regression model for outcommuting
ratios as a function of unemployment, participation rate, density of working places and
average household size. The data were from a 1994 census for 275 Danish
municipalities. The municipality structure is characterised by an average connectivity
of 4.59 and a range from 1 to 8, which is within the ranges of the rook and queen
matrices used in the Monte Carlo studies above. This example is especially interesting
because Lauridsen (2004) estimated a SARX model with a spatial autoregression
parameter as high as 0.99 using IV estimation. Other regional studies, e.g. Rey and
Montouri (1999) and Kosfeld et al. (2002) report an autoregressive parameter of
moderate size. However, the example of a near unit root shows that the case of
spatial nonstationarity has to be taken into account in applied econometrics. For a time
series model, an autocorrelation parameter of this magnitude would be considered as
a safe indication of nonstationarity. It is thus a tempting question whether an alike
indication of spatial nonstationarity may be derived for this model. Table 2 presents a
brief description of the data.

TABLE 1. EMPIRICAL DISTRIBUTION OF THE WALD TEST FOR SPATIAL NONSTATIONARITY
_______________________________________________________________________________________
Matrix:                     Bishop                            Rook                           Queen                    Empirical    χ2(1)

n:                    25   100   225   400        25   100  225   400       25   100  225   400          275
Percentiles:
1 %                11.98 8.74 9.86               7.24 7.17 6.54              7.75 7.43 6.84                 5.99          6.63

5 %                  7.69 7.35 7.82               4.83 4.91 5.05              5.11 5.30 5.17                 4.82          3.84
10 %                6.64 6.68 7.10               4.09 4.27 4.30              4.41 4.43 4.64                 4.17          2.71
_______________________________________________________________________________________
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Table 3 presents the ML estimation of the model. In Lauridsen (2004) it was left as
an open question whether  the unexpected negative sign for the UNEMP coefficient
was caused by spuriosity due to spatial nonstationarity, see alsoLauridsen and Nahrstedt
(1999). The Wald tests for spatial nonstationarity, provided in Table 3, point to stationarity
of the residuals as well as of the single variables. An alike conclusion was derived by
Lauridsen and Kosfeld (2004) based on OLS estimation and LM tests. It is thus safely
concluded that the single variables as well as the entire regression are stationary.
Thus, the negative sign for unemployment is rather due to structural properties than to
spatial nonstationarity.

______________________________________________________________________

TABLE 2. VARIABLES USED FOR EMPIRICAL STUDY
______________________________________________________________________

Variable Definition Mean S.D. Min Max

OUTCOM    Number of persons with residence in the municipality 58.14 37.79 6.00 237.00
and workplace in another municipality in percentage
of the number of workplaces in the municipalitya

PSH1766 Population share of 17-66 year-olds (%)a 65.22  2.85 57.90  74.20

WORKPL Number of workplaces per 100 inhabitantsa 43.11 11.63 21.00 100.00

IPHOUS Number of inhabitants per householda 2.39 0.16 1.74    2.77

UNEMP Number of unemployed per 100 17-66 year-oldsa 9.37 2.24 5.00  18.70
Proximity matrix:
W1 Neighbourhood matrix for N=275 Danish municipalitiesb

Description of number of links per municipality: 4.59 1.68 1   8
Density of W1 = .017

W Row standardization of W1

______________________________________________________________________
Data collected 1994, for N=275 Danish municipalities.
Source: a : Statistics Denmark, Copenhagen.

b : Own construction.
______________________________________________________________________
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______________________________________________________________________

TABLE 3. ESTIMATION OF COMMUTING MODEL
______________________________________________________________________

Dependent variable: OUTCOM.

Variable  Parameter Standard Error T value     Probability

Intercept  -245.17 35.72   -6.86     <.001
UNEMP   -3.58  0.58   -6.15     <.001
PSH1766   4.72  0.43  10.98     <.001
WORKPL  -2.23  0.09 -25.59     <.001
IPHOUS   52.68  7.79    6.76     <.001
ρε    0.63  0.05  11.51     <.001
______________________________________________________________________

Tests for nonstationarity:
Variable Wald Prob(Π2(1)) Prob(Empirical)

OUTCOM 41.83 <0.01 <0.01
UNEMP 16.17 <0.01 <0.01
PSH1766 10.08 <0.01 <0.01
WORKPL 34.61 <0.01 <0.01
IPHOUS   8.26 <0.01 <0.01
residual                    47.26 <0.01 <0.01
______________________________________________________________________

5. CONCLUSIONS

Until recently, it has not been well established how to separate the case of spatial
nonstationarity from the case of stationary positive autocorrelation. As a consequence,
reliable diagnostics for spurious spatial regression and for the existence of spatial
cointegrating relations have not been available. The present study contributes to close
these gaps by proposing a Wald test for detecting spatial nonstationarity. By means of
Monte Carlo simulations the finite sample distribution of the suggested Wald test is
provided for a fairly general set of contiguity matrix types under varying finite sample
sizes. It is found that the critical values for the Wald test for nonstationarity are generally
higher than the χ2 critical values.
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