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ABSTRACT

In this work we (a) discuss some theoretical and computational difficulties of regression analysing
dependences, describing the behaviour of the heterogeneous systems, (b) offer a set of new techniques
adaptable to regression analysing the heterogeneous dependences and (c) demonstrate the advantages of
application of these new techniques in econometrics.
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RESUMEN

En este trabajo (a) se realiza una discusión sobre las dificultades teóricas y prácticas, en el análsisis
de regresión, cuando se trata dedescribir el comportamiento de sistemas heterogéneos (b) se ofrecen un
conjunto de nuevas técnicas de regresión adaptada para analizar las dependencias en los sistemas
heterogéneos (c) se demuestra la ventaja del uso de estas nuevas técnicas en Econometría.
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1. INTRODUCTION

It is well known, many computational problems, arising in the investigation of the
multivariate statistical systems (for instance, econometric systems), can hardly be
solved without using some kind of fitting techniques. Such problems refer to the
construction of mathematical models, description of the investigated systems
behaviour, and/or finding the system parameters values [4]. It has been shown in [1–
 3], that the application of available fitting techniques leads to some theoretical and
computational difficulties (paradoxes). They are mainly explained by the fact that
the modern statements of data analysis problems are too far from the real situations.
In particular, these statements make no provision for facts that:

1. Results of calculations may depend on the way the investigated data are obtained;
2. The given accuracy of estimated values cannot be achieved for the strongly

contaminated data;
3. A single solution of the data analysis problems for contaminated data arrays is

incomplete one;
4. Every investigated system may contain some heterogeneity, which leads to (i)

an adequate, (ii) a removable (local) inadequate or (iii) an irremovable (global)
inadequate postulated fitting model, describing the behaviour of the system.

The main goals of this paper are:
a) Discussing some theoretical and computational difficulties of regression

analysing dependences, describing the behaviour of the heterogeneous systems;
b) Offering some new methods adaptable to regression analysing the heterogeneous

dependences;
c) Illustrating the advantages of application of new regression techniques in

econometrics.

2. COMPUTATIONAL DIFFICULTIES OF REGRESSION ANALYSING
HETEROGENEOUS DEPENDENCES

As generally known [1 – 5], if a dependence {yn, Xn} (n = 1, 2, …, N) and a fitting
function F(A, X) are given, then the main problems of regression analysis theory are
finding estimates of A' and y ' and variances of δA' and δ(y – y '), where A' is an
estimate of vector parameter A of the function F(A, X) and {yn'}= {F(A', Xn)}. In

particular, if F(A, X) =  ∑ =
L
l llha1 )(X {F(A, X) is a linear model}, where hl(X) are

some functions on X, then classical least squares (LS) method gives standard regression
analysis solution:

A'LS = 1T )( −HH YHT ,   (δA')2 =  s/(N – L) 1T )HHdiag( − [1]
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δp(y – y ') = ± tp s ii )( HHHH1 1TT −+ ,

where H is a matrix L×N  in size with n-th row (h1(Xn), h2(Xn), … , hL(Xn)); H
T is the

transposed matrix H; Y = {yn};  s  = ∑ =
−′−

N

n nn )LN/()yy(
1

2  ; Hi = (h1(Xi), h2(Xi),

… , hL(Xi)); the value of tp is determined by t-Student distribution table and generally
depends on the assigned value of the significance level of  p and the value of N – L (a
number of freedom degree); when a value of the significance level of p is assigned
the notation of δp(y – y ') means confidence interval for possible deviations of experi-
mental values of y from computed values  y '= F(A', X).

We found [1 – 3] that three various types of heterogeneity affection may be revealed
when dependences {yn, Xn} are analysed:

a) The heterogeneity has no effect on the results of solving fitting problems.
b) The heterogeneity leads to a removable (local) of fitting function F(A, X).
c) The heterogeneity leads to a irremovable (global) of fitting function F(A, X).
In this Section some of such defects of both LS-solution and alternative regression

analysis solutions are discussed as arise in the cases (b) and (c).

2.1. LS-estimating parameters of inadequate fitting function

α) Let us discuss some defects of the standard solution of the regression problems
for a data array {yn, xn} given in Table 1. This array was obtained by Russian chemist
D. I. Mendeleev in 1881, when he investigated the solvability (y, relative units) of
sodium nitrate (NaNO3) on the water temperature (x, °C).

Table  1.  D. I. Mendeleev data array

n xn yn yn – yn' n xn yn yn – yn'

1    0 66.7 –0.80 6   29 92.9 0.17

2    4 71.0 0.02 7   36 99.4 0.58

3    10 76.3 0.10 8   51 113.6 1.73

4    15 80.6 0.05 9   68 125.1 –1.56

5   21 85.7 –0.07 - - - -

As stated in [5], when p = 0.9 the standard solution (1) for the data array {yn, xn}
has form:

y ' = 67.5 + 0.871 x , δA' = (0.5; 0.2), [2]

δ0.9 (y – y ')  =  ± 0.593 1451261 2 ./)x( −+ .
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We show the plots of δ0.9 (y – y ') on x by heavy lines in Figure 1 and {yn – yn', xn}
by the circles. Since the plot of {yn – yn', xn} steps over the heavy lines in Figure 1,
the first theoretical and computational difficulty is revealed:

The standard solution, suggested in [5] for determining the confidence interval of
the deviations of y from y ', is out of character with the data array {yn, xn} given in
Table 1.

It follows from results presented in Table 1 and/or Figure 1, if one assumes that
δ(y – y ') ≥ max yn – yn' = 1.73 then the broken connections of the confidence interval
δ(y – y ') with D. I. Mendeleev data array will be pieced up [1 – 3]. But in this case

The standard values of δA', calculated by (1), are out of character with the data
array also.

β) Let the data array {yn, xn} be following:
{yn} = (5.66; 10.39; 16.00; 22.36; 29.39; 37.04; 45.25;

54.00; 63.25),  {xn} = (2; 3; &; 10). [3]

As it may be calculated by [1], if the fitting function F(A, X) = a0 + a1x, then
A'LS= (–11.95;  7.24) for the data array [3]. Plots of the dependence [3] (circles) and
the function F(A, X) = –11.95 + 7.24 x (continuous line) are shown in Figure 2(a);
the plot of residues {yn + 11.95 – 7.24xn;  xn} is shown in Figure 2(b).

There are three criteria that the fitting function a0 + a1x is inadequate for the data
array (3):

a) The plot of residues, shown in Figure 1(b), has the form of a parabola, and,
consequently, a second degree multinomial must have the better fitting properties for
the dependence (3) then the linear model;

b) The data array (3) was generated by the function f(x) = 2x1.5:

Figure 1. The plots of confidence interval of the deviation of y from y ' (heavy lines)
and residuals y – y ' (circles) for D. I. Mendeleev data array.
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{yn}={[k f(xn)] / k}, [4]

where square brackets mean the integer part, a factor k =100 and its presence in (4) is
necessary for calculating all values of yn within error e = 0.01;

c) The maximal value of ∆y in Figure 2(b) exceeds appreciably the value of the
computational error ε for the values of y (ε = 0.01).

Dependences of LS-estimations of linear model parameters for the values of the
function 2x1.5 computed at N points uniformly in x on the interval [2; 10], are shown
in Figure 3. Limiting values of parameters a1 and a0  (when N → ∞) are marked by
the dotted lines.

Figure 3. Dependences of LS-estimations of linear model parameters for the values of
the function 2x1.5, computed for N points uniformly in x on the interval [2; 10].

a) b)

Figure 2. (a) – Plots of the dependence (3) (circles) and the function
–11.95 +7.24 x (continuous line); (b) – The plot of residues {yn + 11.95 – 7.24xn;  xn}

a) b)
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We may conclude from analysing of dependences shown in Figure 3
a) Inadequacy of the fitting function a0+a1x leads to the distortion of LS-estimations

of its parameters;
b) The distortion of LS-estimations may be decreased by means of increasing

numbers of records.

2.2.  Alternative estimating parameters of inadequate fitting function

P. Huber [6] noted that, as the rule, 5 – 10% of all observations are anomalous.
There are at least two strategies in order to decrease influence of anomalous
observations (outliers) on estimations of fitting function parameters:

1) Remove all outliers from the data array;
2) Compute the values of A' by means of M-robust estimators.
We note
a) As stated in [7] one of two such equivalent combined statistical procedures

should be adopted for revealing outliers in the data array {yn, Xn}, in which parameter
estimates, minimising the median (MED) of the array {(yn – yn')

2} or the sum (SUM)
of K first elements of the same array, are considered as the best ones;

b) If F(A, X) is a linear function, then a robust M-estimate of A' is found as decision
of one from two minimisation problems [6].

)(S Aϕ = min
1

⇒′−∑
=

N

n
nn )yy(ϕ   or  la/S ∂∂ ϕ  = 0, [5]

where function ϕ(r) is symmetric concerning Y-axis, continuously differentiable with
a minimum at zero and ϕ(0) = 0.

It follows from the values {yn – y'n} adduced in Table 1, that the correspondence
between experimental and computed values of y is slightly getting worse at the
beginning and end of D. I. Mendeleev data array. Namely, we may suppose that records
1, 7, 8 and 9 are outliers.

Let us test effectiveness of both methods, mentioned in points (a) and (b), on
D. I. Mendeleev data array.

α) If two equivalent combined statistical procedures, described in point (a), are
used then following results are obtained:

i) Both procedures MED and SUM reveal only three outliers: records 7, 8 and
9;

ii) If records 7, 8 and 9 are eliminated from D. I. Mendeleev data array, then
none of records of the truncated data array is outlier for procedure MED,
but procedure SUM reveals another two outliers, which are records 2 and 6
into the initial data array.
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Thus, we may conclude
A set of revealed outliers depends sometimes on a type of the used statistical

procedures.

β) Let in (5) Andrews function ϕ(r) {ϕ(r) = d(1–cos(r/d)) if  r ≤ dπ  and  ϕ(r) =0
if  r > dπ} be applied.

It is articulate in Figure 4 that the values of a0 and a1 parameters of the linear
model, fitted D. I. Mendeleev data array, depend on

a) values of internal parameter d of robust Andrews estimator ϕ(r);
b) type of the minimisation robust regression problems, mentioned in (5) (solutions

of the first and second minimisation problem of (5) are marked respectively by triangles
and circles in Figure 4).

Figure 4. Dependences of values of a0 and a1 parameters of the linear model, fitted
D. I. Mendeleev data array, on values internal parameter d of robust Andrews estimator

and the type of the minimisation robust regression problems, mentioned in (5).

Thus, in this case the main difficulty is exhibited in a fact, that
The robust estimates may be not robust in actual practice.

3. MAIN STATEMENTS AND METHODS OF ADAPTIVE REGRESSION
ANALYSIS

As has been mentioned in Section 1 and 2
a) The main difficulty of the modern regression analysis theory consists in

disagreement between statements of this theory, which ensure uniqueness of solutions
for fitting problems, and multiplicity of solutions, existed in actual practice.

b) If the regression analysis of dependence {yn, Xn} describing the heterogeneous
system behaviour is performed then three various situations can be met: postulated
fitting model F(A, X) may be (i) adequate, (ii) removable (local) inadequate and (iii)
irremovable (global) inadequate.
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c) Situation (ii) has a wide distribution in practice. And if it occurs then it means
that the data array under consideration contains some number of outliers.

It is proved in [1, 2] that in situation (ii) one may obtain the correct solution of the
problem on revealing outliers in the data array {yn, Xn} by means of using a set of
methods of adaptive regression analysis.

In this Section we consider the main statements and methods of adaptive regression
analysis.

1. The relation
yn = g(F(A, Xn) + en) [6]

is the main data analysis model of adaptive regression analysis, where yn is n-th value
of dependent variable; n =1, 2, … , N; F(A, X) is a fitting function; en is n-th value of
random variable; g is a function, allowing to describe the way of dependent variable
measurement.

We add
i) If the form of measurement function g in (6) is unknown then it is usually assumed

that g = ga, where ga is the truncation function:

gα(y) = 2α[y/(2α)] + 2α  if   y – 2α [y/(2α)] ≥ α, else  ga(y) = 2α [y/(2α)]; [7]

ii) For the sake of simplicity we will assume further that in (6) g = gα in all cases.
2. The main computational problems of adaptive regression analysis are
a) Finding such minimum value α = αmin, that, for all experiment realisations of

{XU}, containing all possible U subsamples from N, N – 1, …, N – n0 readings, the
inequality

yn – ga(yn')) ≤ αmin [8]

is fulfilled, where N is the dimension of the initial data array {yn, Xn}; yn'  is an
estimate of  n-th value of the dependent variable; n0 is a given integer number, which
assigns a maximum level of truncating the initial data array {yn, Xn}.

The value of αmin is found as a solution of the following extreme problem

,)y(gy
nU

nn ′− α
α

 max max min [9]

where the maximum on U means finding the solution on all U sets of {XU}, composed
of N, N – 1, … , N – n0 readings;

b) Finding a general analytical solution, which is a set of the equivalent analytical
functions gα(F ((Ci', ξ), Xn)), where (Ci', ξ) are some multinomials of degree mi, where
ξ is a variable (–1 ≤ ξ ≤ 1) and Ci  is a vector parameter.

The family of equivalent analytical formulae is constructed by replacing the vector
parameters A of functions gα(F(A, X)) by A = {(Ci, ξ)} and determining the minimum
values of degrees  and the estimates of coefficients in multinomials (Ci, ξ).
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For example, if F(A, X) is a linear model, α=0.94, –1 ≤ ξ ≤ 1 and the family of
equivalent analytical formulae has the form

y '(ξ,  x) = gα( 67.77 – 0.35ξ + (0.86457 + 0.00805ξ) x ), [10]

then yn – y '(ξ,  xn) ≤ 1.73 for D. I. Mendeleev data array adduced in Table 1, where
the value 1.73 is the limiting one for the confidence interval δ(y – y ') {see point (α)
of Section 2.1}.

It may be computed from (10)

i) If S = ( )∑ =
′−

N

n nn ,)x,(yy
1

2ξ  then dependence of S on x has the following form

S(ξ) = 6.69 – 0.661ξ + 0.441ξ [11]

for D. I. Mendeleev data array. Consequently, S(ξ) has least value  in (11) when
ξ= 0.661/(2×0.441) = 0.749. But if ξ = 0.749, then standard LS-solutions
{A'LS= (67.51; 0.871); SLS= 6.44} are obtained from (10) and (11) for D. I. Mendeleev
data array;

ii) If ,)x,(yymaxD nn
n

ξ′−=  then dependence of D on ξ has the following form:

If  ξ ≤ 1.07 then D(ξ) = 1.7369 – 0.0606ξ;
If  x > 1.07 then D(ξ) = 1.4608 + 0.197ξ [12]

for D. I. Mendeleev data array. Consequently, D(ξ) has least value =1.672 in (12)
when ξ= 1.07. But this value of  is obtained when ξ > 1 and so it is not solution for the
problem under consideration. Thus, the correct reply for D. I. Mendeleev data array
is Dmin =1.676 (ξ= 1.00).

We may conclude
The family of equivalent fitting models may be used for obtaining such correct

standard and alternative solutions of modern regression analysis theory as minimised
different criteria.

c) Finding the value of variance δA'.
The value of variance δA' is computed by setting extreme values of parameter ξ

into the general analytical solution gα(F ((Ci', ξ), Xn)).
For example
i) If values of ξ = ±1 are inserted into (10), then the exact limit of the variation of

parameters a0  and a1 may be determined: a0 = 67.77 ± 0.35 and a1 = 0.865 ± 0.008
for function (10), fitted D. I. Mendeleev data array;

ii) If the set of readings with numbers 1, 7, 8 and 9 deletes from D. I. Mendeleev
data array, then the family of equivalent analytical formulae must have the following
form

y'(ξ, x) = gα( 67.521 – 0,045ξ + (0.872243 +  0.002196x) x ) [13]
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for the truncated data array {yn, xn}* in order to keep the difference of yn – yn'
within the limit of the error ε = 0.1, where α = 0.07, –1 ≤ ξ ≤ 1. Consequently, a0 =
67.52 ± 0.045 and a1= 0.872 ± 0.002 in this case.

If solutions (10) and (13) are compared with the standard LS-solution
A' = (67.5±0.5;  0.87±0.2), then the following conclusion may be obtained

Values of variances δa0' and δa1', computed by standard method (1), disagree
with exact values determined by (10) and (13).

4. APPLICATION OF METHODS OF ADAPTIVE REGRESSION
ANALYSIS IN ECONOMETRICS

In this Section we adduce such solutions of fitting problems for three econometric
heterogeneous dependences as obtained by means of the techniques of adaptive
regression analysis and compare these solutions with standard ones computed from
formulae (1).

Problem 1. As stated in [8, P.49–52], standard solutions (1) have the following
form

A' = (31.67 ± 2.25;  1.279 ± 0.003), [14]

for the linear model y = a0+a1x1, fitted data array {yn, xn } of Table 2, where xn is
operation time (months) for n-th car out of service and yn is one year upkeep (hundreds
of francs) for the same car.

Table  2.  The data array for Problem 1
n xn yn n xn yn n xn yn

1 15 48 6 8 40 11 32 71
2 8 43 7 21 56 12 17 58
3 36 77 8 21 62 13 58 102

4 41 89 9 53 100 14 6 35
5 16 50 10 10 47 15 20 60

The techniques of adaptive regression analysis give following solutions for the
fitting problem under consideration:

i) The family of equivalent analytical formulae has the form

y'(ξ,  x) = gα(31.284 + 0.126ξ + (1.2901–   0.0036ξ) x ), [15]

where α=4.85, –1 ≤ ξ ≤ 1. Consequently, a0=31.28 ± 0.13 and a1= 1.2901 ± 0.0036;

ii) If S = ( )∑ =
′−

N

n nn ,)x,(yy
1

2ξ  then dependence of S on ξ has the following

form
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S(ξ) = 132.7 – 0.4427ξ + 0.0716ξ. [16]

Consequently, S(ξ) has least value  in (16) when ξ = 0.4427/(2×0.0716) = 3.09. If
ξ = 3.09, then standard LS-solutions {A'LS= (31.67; 1.279); SLS= 132.015} are obtained
from (15) and (16). But the value ξ = 3.09 >> 1 and so standard LS-solutions (14) are
no part of correct ones.

Problem 2. As stated in [9, 10], for the data array {yn, Xn} shown in the Table 3,
the multivariate model Y3 = a0+a1x1+a2x2 demonstrates well some effects of
multicollinearity and so fitting models Y1 = b0+b1x1 and Y2 = d0+d1x2 are more
preferable.

Table 3. The econometric data {yn, Xn} on investigating the import turnover y
(billion dollars) on gross national product x1 (billion dollars) and consumer price index

x2 in USA

Year Y x1 x2 Year Y x1 x2

1964 28.4 635.7 92.9 1972 75.9 1171.1 125.3

1965 32.0 688.1 94.5 1973 94.4 1306.6 133.1

1966 37.7 753.0 97.2 1974 131.9 1412.9 147.7

1967 40.6 796.3 100.0 1975 126.9 1528.8 161.2

1968 47.7 868.5 104.2 1976 155.4 1702.2 170.5

1969 52.9 935.5 109.8 1977 185.8 1899.5 181.5

1970 58.5 982.4 116.3 1978 217.5 2127.6 195.4

197l 64.0 1063.4 121.3 1979 260.9 2368.5 217.4

Table 4. Computation results

a) The function ga(Yi) (all readings)

i =1 i =2 i =3
n0 αmin n0 αmin n0 αmin
0 37.7 0 40.6 0 47.7
1 45.6 1 55.6 1 56.6

b) The function ga(Yi)  (the first ten readings)

i =1 i =2 i =3
n0 αmin n0 αmin n0 αmin
0 2.7 0 6.4 0 2.7
1 5.7 1 11.1 1 5.7

c) The function ga(Yi)  (the last six readings)

i =1 i =2 i =3
n0 αmin n0 αmin n0 αmin
0 9.0 0 16.0 0 8.0
1 15.5 1 22.2 1 29.0
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Let us find the best fitting model gα(Yi) (i = 1, 2, 3) for the data array of Table 3.
Our calculations give the results presented in points (a – c) of Table 4. Analysing
these results we may conclude that

a) for case (a) of Table 4
i) The model gα(Y1) has the minimal value αmin and so it is the best fitting model

among all tested models ga(Yi);
ii) The econometric system under analysis is heterogeneous for all tested models

since even the minimal value αmin exceeds appreciably the (measurement) error of
the dependent variable y (e = 1);

b) for cases (b) and (c) of Table 4
i) In order to reduce fitting errors of models gα(Yi), the econometric data of Table

3 are to divide into two data arrays, contained respectively the first ten (A1) and the
last six (A2) readings;

ii) for arrays A1 and A2, the model gα(Y1) is the best fitting model and so the
value of y' may be calculated by the formula

y' = g2.7( –34.7 + 0.09553 x1) [17]

for readings of array A1 and by the formula

y' = g9.0( –81.8 + 0.14212 x1) [18]

for readings of array A2.
We add that fitting errors may be reduced by means of replacing the model y =

gα(a0 + a1x1) with ln y = gα(a0 + a1 ln x1) and eliminating data of 1974 year from the
initial dependence {yn, Xn} adduced in Table 3. In this case the family of equivalent
analytical formulae has the form

ln y '(ξ,  x) = ga( –7.675 – 0.610ξ + (1.70465+0.08625ξ) ln x1), [19]

where α=0.072, –1 ≤ ξ ≤ 1.

It may be computed from (19)

i) If S = ( )∑ =
′−

N

n nn ,)x,(yy
1

2ξ then dependence of S on ξ has the following form

S(ξ) = 97.57 – 80.475ξ + 471.43ξ + 24.042ξ. [20]

Consequently, S(ξ) has least value  in (20) when ξ= 0.0848. But if ξ=0.0848, then
standard LS-solutions {A'LS= (–7.7267; 1.7119); SLS= 94.18} are obtained from (19)
and (20) for the model y = exp(a0 + a1 ln x1) fitted the data array adduced in Table 3;
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ii) If ,)x,(yymaxD nn
n

ξ′−=  then dependence of D on ξ has the minimum value

Dmin= 4.935 when ξ = 0.211 and the best fitting model (for this value of ξ) has the
following form

y ' = exp(–7.8037+1.7228×ln x1). [21]

Problem 3. Let us discuss some regression solutions adduced in [11] for the data
array {yn, xn} shown in the Table 5.

Table 5. The econometric data {yn, xn} on full (y) and stated (x) cost of bank shares in
million pesetas for 20 Spanish banks and classification of these banks on values of

yn – yn' and 4xn /yn.

n Bank name xn yn yn – yn' 4xn /yn

First group

1 Alicante 8.018 29.988 –9.21 1.07

Second group

2 Andalucía 39.958 89.905 11.77 1.78
3 Galicia 16.538 34.233 –15.35 1.93
4 Mapfre 84.128 173.303 41.33 1.94
5 Popular 274.906 558.059 193.52 1.97
6 Castilla 24.122 47.038 –11.79 2.05
7 Vasconia 8.261 15.200 –24.29 2.17
8 Santander 327.498 582.947 154.29 2.25
9 Bankinter 99.526 172.180 21.43 2.31

Third group

10 BBV 568.672 892.815 170.16 2.55
11 Credito Bale 7.165 10.819 –27.34 2.65
12 Guipuzcuano 20.513 30.974 –23.45 2.65
13 Valencia 24.869 37.552 –22.18 2.65
14 Exterior 232.184 325.057 12.60 2.86
15 Atlantico 47.899 64.664 –23.15 2.96
16 Argentaria 474.760 612.440 4.27 3.10

Fourth group

17 Zaragozano 40.065 42.068 –36.19 3.81
18 Pastor 55.923 54.245 –43.35 4.12

Fifth group
- - - - - -

Sixth group

19 Central Hisp 604.973 429.531 –337.37 5.63
20 Vitoria 11.239 7.418 –35.70 6.06
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As stated in [11], for the data array {yn, xn} shown in the Table 5, the linear model
y = a0+a1x has maximum fitting errors (maximum values of the difference yn – yn')
for four Spanish banks (Popular, Santander, BBV and Central Hisp). And this fact
connects only with big size of these banks.

Our opinion is that
i) Regression solutions obtained in [11] do not agree with big degree of the

heterogeneity of dependence {yn, xn} shown in Table 5;
ii) Correct classification of 20 Spanish banks may be performed on values of

4xn /yn: the number Kn of classification group for readings (yn, xn) is determined by
formula

Kn = ),y/x(g nn4+ [22]

where function  is “the nearest integer to z” (for example, 11.07 =+ )(g ,

21.78 =+ )(g ).

5. CONCLUSION

In this paper the emergence of computational difficulties of regression analysing
heterogeneous dependences is explained by inadequacy of the fitting function F(A, X).
It is stated that the following criteria and methods are to be constructed for bypassing
the computational difficulties:

a) Objective criteria allowing on the given dependence {yn, Xn} to determine
whether the heterogeneity has effect on the form of regression solutions;

b) Methods of solving regression problems for inadequate fitting models.
It is demonstrate in Sections 3 and 4 that the problem (a) is solved completely by

means of techniques of adaptive regression analysis. Thus in order to carry the theory
of adaptive estimation of parameters to completion it is necessary to elaborate advanced
estimation method for the case, when the fitting model is irremovable (global)
inadequate. This problem is theme of our further studies. Some preliminary results
on solving this problem may be found in [1, 12].
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